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Note on the instability of a non-uniform vortex sheet 

By L. M. HOCKING 
University College London, Gower Street, W.C. 1 

(Received 3 August 1964) 

Howard’s semicircle theorem and a variational principle for the instability of 
unidirectional flow of an inviscid fluid are applied to the non-uniform vortex 
sheets discussed in a previous paper (Hocking 1964). Certain results of $ 5  of 
that paper are shown to be wrong and the correct results are obtained. 

1. The semicircle theorem 
Howard (1961) has proved that the complex wave velocity of an unstable 

disturbance to plane unidirectional flow with velocity W(y) must lie within the 
semicircle in the upper half-plane which has the range of values of W as diameter. 
Eckart (1963) has shown that the same result holds for more general flows, 
including non-planar flows with velocity W ( x ,  y). Because intermediate results 
are also needed in the following section, a derivation of this result for non-planar 
flows, slightly different from Eckart’s, is given here. The fluid is of uniform 
density p and occupies a cylindrical region with cross-section S in the (x, y)-plane, 
bounded by the curve C. If the velocity disturbance is (u, v, w)exp(ia(z-ct)) 
and the pressure disturbance pexp{ia(x-ct)} and if u is the two-dimensional 
vector (u, v) and V the two-dimensional gradient operator, the linearized equa- 
tions of motion and the equation of continuity are 

ia( w - c )  u = - vp/p, 

vu + iaw = 0. 

(1) 

ia (W-c)w+u.VW = -iap/p, ( 2 )  

(3) 

(4) 

The boundary condition that the normal velocity vanishes on C is, because of 

The equation for p is found from these equations to be 

V(( w - c)-ZVp) - a2( w - c)-2p = 0. 

(l),  n.Vp = 0, where n is normal to C, so that 

J-(n.Vp)(W-c)-2@dC = 0, 

where 17 is the complex conjugate of p .  Transforming this integral round C to 
an integral over S ,  we have 

Jh{( W - c)-ZpVp) dS = /I( W - c ) - ~  Vp. Vp  dS + W - c ) - ~  Vp) dS = 0, 
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and, by use of (4), this reduces to 

",. 

With c = c,+ic, and ci > 0, the real and imaginary parts of this equation give 

iJ( W - c,) CD dS = 0) 

/I{( w - c,), - c:} CD dS = 0, 

( 7 )  

where 

Equations ( 7 )  and (8) are exactly the same as those obtained by Howard, apart 
from the form of CD. Hence Howard's result, which he derived by integrating 
the non-negative function ( W - a)  (b - W )  @, where a and b are the least and 
greatest values of W ,  is also true for non-planar flow, i.e. the complex wave 
velocity lies within the semicircle which has the range of values of lY(x,y) as 
diameter. 

When this result is applied to non-uniform vortex sheets, a second result of 
a similar kind can be obtained. Suppose that 5' is divided by a vortex sheet into 
two regions S,  and S,, and that a, 6 W < b, in S,  and u, 6 W ,< b, in S,. If 
b, < a,, so that the ranges of W in the two regions do not overlap, the semicircle 
theorem shows that c lies within the semicircle with diameter extending from 
a, to b,. The same argument that led to the semicircle theorem, when applied to 
the non-positive function (W - b,) (a ,  - W )  CD, shows that c must lie outside the 
semicircle with diameter extending from 6 ,  to a,, so there is an inner, as well as 
an outer, boundary to  c. If the ranges of W overlap, i.e. b, > a,, the inner 
boundary disappears. 

When the results obtained in a previous paper (Hocking 1964) are tested by 
these restrictions on the possible values of c, i t  is found that the values of c 
obtained in $9 3 , 4  lie in the appropriate regions, but those obtained in 5 6 do not. 
The value of W in that  section was 

CD = / w - e p { l a p / a x / 2 +  [ap/ay/2+a2lp/~) 3 0. 

w = Wo{l+h(3y-n)/7r} (x > 0)) 

= 0 (x < 0))  

with A small and the flow confined to the region 0 6 y < 7r. The reason for the 
discrepancy is that a negative sign was omitted from the values of ymn given in 
equation (47) and this error, for which the author apologises, has invalidated the 
subsequent calculation of c and the construction of both figures. When the 
calculations were repeated with the correct values of ymn, the value of c with the 
largest imaginary part was found to be +J&( 1 + A )  (1 + i ) ,  which lies on the semi- 
circle with the points 0 and Hi(  1 + A )  as the ends of the diameter. The maximum 
growth rate can be written $a max ( Wi), where I4.l is the velocity a t  the interface 
x = 0. I n  the previous paper, the same result was found to be true generally for 
large a, and also, for the particular flow considered in $ 4, to be true for any a. 
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2. A variational principle 
I f $  is replaced by p in ( 5 ) ,  the analysis which led to (6) gives 

F@, C) 3 ( W - c)-' {(VP)~ + a2p2}dS = 0. (9) JJ 
If SF, is the variation in F produced by keeping W and c fixed and replacingp by 
p+Sp, we have 

SF, = 21'; W - c ) - ~  {Vp . V Sp + a2p Sp) dS 

= 2J(n. VP) ( W -  c)-2SpdC- 2 sp [V{( W -  c)-"p} - a2(w - c)-"1 dS, ss 
so that SF, vanishes for arbitrary Sp i f p  satisfies (4) and the boundary condition. 
This variational principle can be used to determine the change in the eigenvalues 
c when a small change is made in W .  Suppose p, is an eigenfunction corre- 
sponding to the eigenvalue c, for a flow with velocity W,, and that p, + Sp and 
c, + Sc are the corresponding quantities when W = I$; + SW. Then 

F(p, + Sp, UT, + SW C, + SC) = P(p,, ?%, c,) = 0. 

Since p ,  satisfies (4), the variational principle shows that SFp = 0, and hence 
S q V  + SF, = 0, which gives 

JJ(SW-SC) (~~-cn)-3{(Vp,)2,+a2p~)dX = 0. (10) 

U/Ji(VP0)2+ a2P3 0% = Jjk{(VP,)2+ .2P3 d3, 

In  the non-uniform vortex sheets under consideration, the velocity distribu- 
tion is W = W,(l + hW,(x, y)), x > 0 and W = 0, x < 0. With h zero, the value of 
c is $I%( 1 + i )  and p is an even function of x. Substituting thcse values in ( lo) ,  we 
find that, for h small, c has the form +W,( 1 + i) (1  + hq) with q real and 

(11)  
x>o s>o 

and p, satisfies (V2 - a2) p, = 0. 
The semicircle theorem shows that min (Hi) < q < max (TK), which is also 

obvious directly from (11). It was shown in $ 3  of the previous paper that, for 
a+co, q takes all values between min ( W t )  and max ( Wi) .  If the least and 
greatest values of W, are attained at the interface, q can take all values between 
these values of W, and no others. For the flows discussed in $5  4 , 5  of the previous 
paper, the extreme values of W, were 1,  and these values were attained a t  the 
interface. It follows at once that the complete range of values of c for both flows 
is +W,( 1 + i )  (1 + hp) where p takes all values between - 1 and 1.  However, the 
detailed calculations for those two flows showed the additional fact that the 
upper bound of p is 1 for any given a and not just for a + co. 

The use of the variational principle was suggested to me by Prof. L. N. Howard 
and I wish to record my thanks for his helpful suggestions about this problem. 
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